
ndn-python-repo

Zhaoning Kong

Mar 26, 2024

CONTENTS:

1 ndn-python-repo 1

2 Install and Run 3
2.1 Install . 3
2.2 Migrate from repo-ng . 3
2.3 Instruction for developers . 3

3 Configuration 5
3.1 Repo namespace . 5
3.2 Repo prefix registration . 5
3.3 Choose the backend database . 6
3.4 TCP bulk insert . 6
3.5 Logging . 6
3.6 systemd . 7

4 Specification 9
4.1 Encoding . 9
4.2 Insert . 10
4.3 Delete . 11
4.4 Check . 12
4.5 RepoCommandRes . 13
4.6 TCP bulk insert . 13
4.7 Overall . 13
4.8 Joining SVS Sync (Draft) . 14

5 Miscellaneous packages 15
5.1 Client-side packages . 15
5.2 ConcurrentFetcher package . 18
5.3 PubSub package . 18
5.4 Storage package . 21

6 Examples 23

7 Authors 25

8 Future Plans 27

9 Indices and tables 29

Python Module Index 31

i

Index 33

ii

CHAPTER

ONE

NDN-PYTHON-REPO

A Named Data Networking (NDN) Repo implementation using python-ndn.

Please see our documentation if you have any issues.

1

https://github.com/UCLA-IRL/ndn-python-repo/actions/workflows/pythonpackage.yml
https://pypi.org/project/ndn-python-repo/
https://ndn-python-repo.readthedocs.io/en/latest/
https://github.com/named-data/python-ndn
https://ndn-python-repo.readthedocs.io/en/latest

ndn-python-repo

2 Chapter 1. ndn-python-repo

CHAPTER

TWO

INSTALL AND RUN

2.1 Install

Install the latest release with pip:

$ /usr/bin/pip3 install ndn-python-repo

Optionally, you can install the latest development version from source:

$ git clone https://github.com/JonnyKong/ndn-python-repo.git
$ cd ndn-python-repo && /usr/bin/pip3 install -e .

2.2 Migrate from repo-ng

ndn-python-repo provides a script to migrate existing data from repo-ng:

$ ndn-python-repo-port -d <path-to-repo-ng-dbfile> \
-a <ndn-python-repo-ipaddr> \
-p <ndn-python-repo-port>

It takes as input a repo-ng database file, reads the Data packets and pipe them through TCP bulk insert into the new
repo.

2.3 Instruction for developers

For development, poetry is recommended.

$ poetry install --all-extras

To setup a traditional python3 virtual environment with editable installation:

python3 -m venv venv
. venv/bin/activate
pip3 install -e ".[dev,docs]"

Run all tests:

3

https://python-poetry.org/

ndn-python-repo

$ nfd-start
$ pytest tests

Compile the documentation with Sphinx:

$ poetry run make -C docs html
$ open docs/_build/html/index.html

4 Chapter 2. Install and Run

CHAPTER

THREE

CONFIGURATION

You can configure ndn-python-repo with a config file, by specifying the path to the file when starting a repo instance:

$ ndn-python-repo -c <config_file>

A sample config file is provided at ndn_python_repo/ndn-python-repo.conf.sample.

If no config file is given on the command line, this sample config file will be used by default.

3.1 Repo namespace

Specify the name of a repo in the config file. For example:

repo_config:
the repo's routable prefix
repo_name: 'testrepo'

Another option is to specify the repo name when starting a repo on the command line. This overrides the repo name in
the config file:

$ ndn-python-repo -r "/name_foo"

3.2 Repo prefix registration

By default, the repo registers the root prefix /.

Alternatively, you can configure repo such that it doesn’t register the root prefix:

repo_config:
register_root: False

If register_root is set to False, the client is responsible of telling the repo which prefix to register or unregister
every time in RepoCommandParameter. See Insert and Delete for details.

5

ndn-python-repo

3.3 Choose the backend database

The ndn-python-repo uses one of the three backend databases:

• SQLite3 (default)

• leveldb

• MongoDB

To use non-default databases, perform the following steps:

1. Install ndn-python-repo with additional database support that you need:

$ /usr/bin/pip3 install ndn-python-repo[leveldb]
$ /usr/bin/pip3 install ndn-python-repo[mongodb]

2. Specify the database selection and database file in the config file. For example:

db_config:
choose one among sqlite3, leveldb, and mongodb
db_type: 'mongodb'

only the chosen db's config will be read
mongodb:
'db': 'repo'
'collection': 'data'

3.4 TCP bulk insert

By default, the repo listens on 0.0.0.0:7376 for TCP bulk insert. You can configure in the config file which address
the repo listens on. For example:

tcp_bulk_insert:
'addr': '127.0.0.1'
'port': '7377'

3.5 Logging

Repo uses the python logging module, and by default logs all messages of and above level INFO to stdout. You can
override the default options in the config file. For example:

logging_config:
'level': 'WARNING'
'file': '/var/log/ndn/ndn-python-repo/repo.log'

6 Chapter 3. Configuration

ndn-python-repo

3.6 systemd

To run ndn-python-repo with systemd on Linux, perform the following steps:

1. Run the provided script to install the systemd script to /etc/systemd/system/:

$ sudo ndn-python-repo-install

2. Then, start, stop, and monitor a repo instance with systemd:

$ sudo systemctl start ndn-python-repo
$ sudo systemctl stop ndn-python-repo
$ sudo systemctl status ndn-python-repo

3. Examine logs:

$ sudo journalctl -u ndn-python-repo.service

3.6. systemd 7

ndn-python-repo

8 Chapter 3. Configuration

CHAPTER

FOUR

SPECIFICATION

4.1 Encoding

Most repo commands and status reports are Data packets whose Content contains RepoCommandParam or
RepoCommandRes structure. These Data are issued via Pub-Sub protocol. Each RepoCommandParam and
RepoCommandRes contains multiple ObjectParam and ObjectResult, resp. These structures are defined as follows:

ObjectParam =
Name
[ForwardingHint]
[StartBlockId]
[EndBlockId]
[RegisterPrefix]

ObjectResult =
Name
StatusCode
[InsertNum]
[DeleteNum]

RepoCommandParam =
1 * (OBJECT-PARAM-TYPE TLV-LENGTH ObjectParam)

RepoCommandRes =
StatusCode
0 * (OBJECT-RESULT-TYPE TLV-LENGTH ObjectResult)

RepoStatQuery =
RequestNo

ForwardingHint = FORWARDING-HINT-TYPE TLV-LENGTH Name

StartBlockId = START-BLOCK-ID-TYPE TLV-LENGTH NonNegativeInteger

EndBlockId = END-BLOCK-ID-TYPE TLV-LENGTH NonNegativeInteger

RegisterPrefix = REGISTER-PREFIX-TYPE TLV-LENGTH Name

StatusCode = STATUS-CODE-TYPE TLV-LENGTH NonNegativeInteger

InsertNum = INSERT-NUM-TYPE TLV-LENGTH NonNegativeInteger
(continues on next page)

9

ndn-python-repo

(continued from previous page)

DeleteNum = DELETE-NUM-TYPE TLV-LENGTH NonNegativeInteger

RequestNo = REQUEST-NO-TYPE TLV-LENGTH 1*OCTET

The type number assignments are as follows:

type Assigned number (decimal) Assigned number (hexadecimal)
START-BLOCK-ID-TYPE 204 0xCC
END-BLOCK-ID-TYPE 205 0xCD
REQUEST-NO-TYPE 206 0xCE
STATUS-CODE-TYPE 208 0xD0
INSERT-NUM-TYPE 209 0xD1
DELETE-NUM-TYPE 210 0xD2
FORWARDING-HINT-
TYPE

211 0xD3

REGISTER-PREFIX-TYPE 212 0xD4
OBJECT-PARAM-TYPE 301 0x12D
OBJECT-RESULT-TYPE 302 0x12E

4.1.1 Status Code Definition

The status codes are defined as follows:

Code name Value Explanation
ROGER 100 Command received but not been executed yet
COMPLETED 200 Command completed
IN-PROGRESS 300 Command working in progress
FAILED 400 Command or parts of it failed
MALFORMED 403 Command is malformed
NOT-FOUND 404 Queried command not found

4.2 Insert

Repo insertion process makes use of the PubSub package.

1. The repo subscribes to the topic /<repo_name>/insert.

2. The client publishes a message to the topic /<repo_name>/insert. The message payload is
RepoCommandParam containing one or more ObjectParam with the following fields:

• name: either a Data packet name, or a name prefix of segmented Data packets.

• start_block_id (Optional): inclusive start segment number.

• end_block_id (Optional): inclusive end segment number.

• forwarding_hint (Optional): forwarding hint for Data fetching.

This is useful in two scenarios:

10 Chapter 4. Specification

ndn-python-repo

• The producer choose not to announce its name prefix, but only allow the repo to reach
it via forwarding hint.

• The name prefix is already announced by repo node(s), but the producer in another node
wants to insert to the repo.

• register_prefix (Optional): if repo doesn’t register the root prefix (Configuration
register_root is disabled), client can tell repo to register this prefix.

3. The repo fetches and inserts single or segmented Data packets according to given parameters.

• If neither start_block_id nor end_block_id are given, the repo fetches a single packet identified in name
parameter. The insertion process succeeds when this packet is received.

• If only end_block_id is given, start_block_id is considered 0.

• If only start_block_id is given, end_block_id is auto detected, i.e. infinity.

• If both block ids are given, the command is considered as correct only if end_block_id >= start_block_id.

• Whenever the repo cannot fetch a segment, it will stop, no matter what end_block_id is.

• Segment numbers are encoded in accordance with NDN naming conventions rev2.

4.2.1 Insert status check

The client can use the Check protocol to check the progress of an insertion process. The insertion check response
message payload is RepoCommandRes containing zero or more ObjectResult with the following fields:

• status_code: status code, as defined on Check. Both the command itself and objects has a status code.

• name: the name of object to insert.

• insert_num: number of Data packets received by the repo so far.

• The number of ObjectResult in the result should be either: * =0, which means the command is malformed or
not allowed. * equals to the number of ObjectParam in the insertion command.

4.3 Delete

Repo deletion process makes use of the PubSub package.

1. The repo subscribes to the topic /<repo_name>/delete.

2. The client publishes a message to the topic /<repo_name>/delete. The message payload is
RepoCommandParam containing one or more ObjectParam with the following fields:

• name: either a Data packet name, or a name prefix of Data packets.

• start_block_id (Optional): inclusive start segment number.

• end_block_id (Optional): inclusive end segment number.

• register_prefix (Optional): if repo doesn’t register the root prefix (Configuration register_root is dis-
abled), client can tell repo to unregister this prefix.

3. The repo deletes Data packets according to given parameters.

• If both start_block_id and end_block_id are omitted, the repo deletes a single packet identified in name
parameter. The deletion process succeeds when this packet is deleted.

4.3. Delete 11

https://named-data.net/publications/techreports/ndn-tr-22-2-ndn-memo-naming-conventions/

ndn-python-repo

• If start_block_id is specified but end_block_id is omitted, the repo starts deleting segments starting from
/name/start_block_id, and increments segment number after each packet. When a name query does not find
an existing segment, the deletion process stops and is considered successful.

• Otherwise, the repo fetches all segments between /name/start_block_id and /name/end_block_id. If
start_block_id is omitted, it defaults to 0. The deletion process succeeds when all packets are deleted.

• Segment numbers are encoded in accordance with NDN naming conventions rev2.

Warning: Please use exactly the same parameters as you inserted the Data to delete them. The current maintainer
is not sure whether there will be problems if you provide a wrong register_prefix or only delete partial of the
segments (i.e. provide different block ids). Also, using single packet deletion command to delete a segment Data
object or vice versa will always fail, with delete_num being 0.

4.3.1 Delete status check

The client can use the Check protocol to check the progress of an deletion process. The deletion check response message
payload is RepoCommandRes containing zero or more ObjectResult with the following fields:

• status_code: status code, as defined on Check. Both the command itself and objects has a status code.

• name: the name of object to delete.

• delete_num: number of Data packets deleted by the repo so far.

• The number of ObjectResult in the result should be either: * =0, which means the command is malformed or
not allowed. * equals to the number of ObjectParam in the deletion command.

4.4 Check

The check protocol is used by clients to check the progress of a insertion or deletion process.

1. The check prefix for <command> is /<repo_name>/<command> check. For example, the check prefix for
insertion is /<repo_name>/insert check, and deletion is /<repo_name>/delete check.

2. Status check Interests are send to the check prefix directly. No Pub-Sub is used here.

3. The check Interest should carry an application parameter RepoStatQuery, which contains the request number of
the command. The request number of the command is always the SHA256 hash of the command data published
in Pub-Sub.

4. After receiving the query Interest, the repo responds with a Data packet containing RepoCommandRes.

5. The status is only kept for 60s after the operation finishes. After that time, all queries will be responded with
NOT-FOUND.

12 Chapter 4. Specification

https://named-data.net/publications/techreports/ndn-tr-22-2-ndn-memo-naming-conventions/

ndn-python-repo

4.5 RepoCommandRes

• The RepoCommandRes Data contains a status code for the whole command, with the following rules:

– MALFORMED: If the command cannot be parsed.

– NOT-FOUND: If the given request no is not associated with a valid command. This is also returned when the
repo has not finish fetching the command from Pub-Sub, or the command has finished for more than 60s.

– COMPLETED: If all operations (for all objects) completed.

– IN-PROGRESS: The command is received and being executed.

– FAILED: If one or more operation in the command fails. If the is insertion, this means some or all objects
requested to insert cannot be completely fetched. However, fetched objects or segments are still inserted
into the repo. Only the objects with insert_num=0 are not inserted.

• For each ObjectResult contained in the RepoCommandRes, the status code can be one of the following:

– ROGER: The whole command is received and the operation on this object will be started in the future.

– MALFORMED: If the object has wrong parameter.

– FAILED: If the operation on this object failed to execute. For example, not all segments specified can be
fetched. Note that even for a failed object, fetched segments are still put into the repo and can be fetched.

– COMPLETED: If the operation on this object succeeded.

4.6 TCP bulk insert

4.7 Overall

The repo is considered as part of the NDN network infrastructure. Therefore, when deployed for production, the security
requirements are supposed to be specified by the authority, such as the network operator or the project manager.

For development deployment or internal use, the settings described in this section are recommended.

4.7.1 Required Settings

• All Interests with application parameters are required to be signed. Otherwise the Repo must drop the Inter-
est. Currently including the check Interest /<repo_name>/<command> check and the publication notification
Interest "/<topic>/notify".

• Check Interests are required to have at least one of SignatureTime, SignatureNonce, or SignatureSeqNum.
Otherwise, Check Interests’ result is undefined behavior. This is to make sure these check Interests are different
to avoid cache invalidation.

Warning: Unfortunately current implementation does not follow these requirements by default. This may cause
some potential vulnerbilities. Will be fixed in future versions.

4.5. RepoCommandRes 13

ndn-python-repo

4.7.2 Recommended Settings

• Packet signatures should be signed by asymmetric algorithms. Use ECDSA or Ed25519 when in doubt.

• Signed Interests should use SignatureNonce.

– Since there is no replay attack, the Repo does not have to remember the list of SignatureNonce.

• If the Repo is provided as a network service, the certifcate obtained from the network provider should be used.
In this case, the prefix registration command and repo’s publication data are signed using the same key.

– For example, if one employs a Repo as a public service of NDN testbed, then both the client and the Repo
server should use their testbed certificates.

– The Repo should use the same verification method as its local NFD node to verify the register.

– The client should use the same verification method as how it verifies the prefix registration command.

• If the Repo is provided as an application service, it should either obtain an identity from the application names-
pace, or runs on its own trust domain and holds the trust anchor. In this case, the prefix registration command
and repo’s publication data are signed using different keys.

– In this case, the Repo is supposed obtain the trust schema when it is bootstrapped into the application’s
namespace. If it is unable to obtain the trust schema, it should maintain a user list to verify the clients. The
client should do similar things.

4.8 Joining SVS Sync (Draft)

• Joining SVS Sync group is an optional feature. It should only be enabled when it is deployed as a network service.

– If the Repo is deployed as an application service, the application deployer should run another process on
the same node as an SVS peer and use the Repo only for Data.

• The Repo should not join an application’s SVS sync group as a producer. (unless the sync group is specifically
designed for Repos to backup data)

• The Repo should learn how to verify the target SVS group’s Sync Interest.

• The Repo should store its received latest SVS notification Interest as is, and responds with this Interest when it
hears some out-of-dated SVS vector.

• If there are multiple latest SVS state vectors, e.g. [A:1, B:2] and [A:2, B:1], the Repo will not be able to
merge them into [A:2, B:2]. Instead, it should respond with both stored Interests eventually. Maybe all at
once, maybe one at one time. Not decided yet.

14 Chapter 4. Specification

CHAPTER

FIVE

MISCELLANEOUS PACKAGES

5.1 Client-side packages

5.1.1 Introduction

Application built with python-ndn can make use of the client packages provided.

There are four parts:

1. PutfileClient: insert files into the repo.

2. GetfileClient: get files from the repo.

3. DeleteClient: detele data packets from the repo.

4. CommandChecker: check process status from the repo.

The example programs in examples/ illustrate how to use these packages.

Note that the type Union[Iterable[Union[bytes, bytearray, memoryview, str]], str, bytes,
bytearray, memoryview] in the documentation is equivalent to the ndn.name.NonStrictName type.

5.1.2 Reference

class ndn_python_repo.clients.putfile.PutfileClient(app, prefix, repo_name)
A client to insert files into the repo.

Parameters

• app (NDNApp) – NDNApp.

• prefix (Union[Iterable[Union[bytes, bytearray, memoryview, str]], str, bytes,
bytearray, memoryview]) – NonStrictName. The name of this client

• repo_name (Union[Iterable[Union[bytes, bytearray, memoryview, str]], str,
bytes, bytearray, memoryview]) – NonStrictName. Routable name to remote repo.

async insert_file(file_path, name_at_repo, segment_size, freshness_period, cpu_count,
forwarding_hint=None, register_prefix=None, check_prefix=None)

Insert a file to remote repo.

Parameters

• file_path (str) – Local FS path to file to insert.

• name_at_repo (Union[Iterable[Union[bytes, bytearray, memoryview, str]], str,
bytes, bytearray, memoryview]) – NonStrictName. Name used to store file at repo.

15

ndn-python-repo

• segment_size (int) – Max size of data packets.

• freshness_period (int) – Freshness of data packets.

• cpu_count (int) – Cores used for converting file to TLV format.

• forwarding_hint (Union[Iterable[Union[bytes, bytearray, memoryview, str]],
str, bytes, bytearray, memoryview, None]) – NonStrictName. The forwarding hint
the repo uses when fetching data.

• register_prefix (Union[Iterable[Union[bytes, bytearray, memoryview, str]],
str, bytes, bytearray, memoryview, None]) – NonStrictName. If repo is configured
with register_root=False, it registers register_prefix after receiving the insertion
command.

• check_prefix (Union[Iterable[Union[bytes, bytearray, memoryview, str]], str,
bytes, bytearray, memoryview, None]) – NonStrictName. The repo will publish process
check messages under <check_prefix>/check. It is necessary to specify this value in
the param, instead of using a predefined prefix, to make sure the subscriber can register
this prefix under the NDN prefix registration security model. If not specified, default value
is the client prefix.

Return type
int

Returns
Number of packets inserted.

class ndn_python_repo.clients.getfile.GetfileClient(app, repo_name)
This client fetches a file from the repo, and save it to working directory.

A client to retrieve files from the remote repo.

Parameters

• app (NDNApp) – NDNApp.

• repo_name – NonStrictName. Routable name to remote repo.

async fetch_file(name_at_repo, local_filename=None, overwrite=False)
Fetch a file from remote repo, and write to the current working directory.

Parameters

• name_at_repo (Union[Iterable[Union[bytes, bytearray, memoryview, str]], str,
bytes, bytearray, memoryview]) – NonStrictName. The name with which this file is
stored in the repo.

• local_filename (str) – str. The filename of the retrieved file on the local file system.

• overwrite – If true, existing files are replaced.

class ndn_python_repo.clients.delete.DeleteClient(app, prefix, repo_name)
This client deletes data packets from the remote repo.

Parameters

• app (NDNApp) – NDNApp.

• repo_name (Union[Iterable[Union[bytes, bytearray, memoryview, str]], str,
bytes, bytearray, memoryview]) – NonStrictName. Routable name to remote repo.

16 Chapter 5. Miscellaneous packages

ndn-python-repo

async delete_file(prefix, start_block_id=0, end_block_id=None, register_prefix=None,
check_prefix=None)

Delete from repo packets between “<name_at_repo>/<start_block_id>” and
“<name_at_repo>/<end_block_id>” inclusively.

Parameters

• prefix (Union[Iterable[Union[bytes, bytearray, memoryview, str]], str, bytes,
bytearray, memoryview]) – NonStrictName. The name of the file stored in the remote
repo.

• start_block_id (int) – int. Default value is 0.

• end_block_id (int) – int. If not specified, repo will attempt to delete all data packets
with segment number starting from start_block_id continously.

• register_prefix (Union[Iterable[Union[bytes, bytearray, memoryview, str]],
str, bytes, bytearray, memoryview, None]) – If repo is configured with
register_root=False, it unregisters register_prefix after receiving the deletion
command.

• check_prefix (Union[Iterable[Union[bytes, bytearray, memoryview, str]], str,
bytes, bytearray, memoryview, None]) – NonStrictName. The repo will publish process
check messages under <check_prefix>/check. It is necessary to specify this value in
the param, instead of using a predefined prefix, to make sure the subscriber can register
this prefix under the NDN prefix registration security model. If not specified, default value
is the client prefix.

Return type
int

Returns
Number of deleted packets.

class ndn_python_repo.clients.command_checker.CommandChecker(app)
This client sends check interests to the repo.

Parameters
app (NDNApp) – NDNApp.

async check_delete(repo_name, request_no)
Check the status of a delete process.

Parameters

• repo_name – NonStrictName. The name of the remote repo.

• request_no (bytes) – bytes. The request id of the process to check.

Return type
RepoCommandRes

Returns
The response from the repo.

async check_insert(repo_name, request_no)
Check the status of an insert process.

Parameters

• repo_name (Union[Iterable[Union[bytes, bytearray, memoryview, str]], str,
bytes, bytearray, memoryview]) – NonStrictName. The name of the remote repo.

5.1. Client-side packages 17

ndn-python-repo

• request_no (bytes) – bytes. The request id of the process to check.

Return type
RepoCommandRes

Returns
The response from the repo.

5.2 ConcurrentFetcher package

5.2.1 Introduction

Fetch data packets in parallel using a fixed window size.

Note that the type Union[Iterable[Union[bytes, bytearray, memoryview, str]], str, bytes,
bytearray, memoryview] in the documentation is equivalent to the ndn.name.NonStrictName type.

5.2.2 Reference

async ndn_python_repo.utils.concurrent_fetcher(app, name, start_block_id, end_block_id, semaphore,
**kwargs)

An async-generator to fetch data packets between “name/start_block_id” and “name/end_block_id” concurrently.

Parameters

• app (NDNApp) – NDNApp.

• name (Union[Iterable[Union[bytes, bytearray, memoryview, str]], str, bytes,
bytearray, memoryview]) – NonStrictName. Name prefix of Data.

• start_block_id (int) – int. The start segment number.

• end_block_id (Optional[int]) – Optional[int]. The end segment number. If not speci-
fied, continue fetching until an interest receives timeout or nack or 3 times.

Returns
Yield (FormalName, MetaInfo, Content, RawPacket) tuples in order.

5.3 PubSub package

5.3.1 Introduction

The PubSub package provides a pub-sub API with best-effort, at-most-once delivery guarantee.

If there are no subscribers reachable when a message is published, this message will not be re-transmitted.

If there are multiple subscribers reachable, the nearest subscriber will be notified of the published message in an any-cast
style.

Note that the type Union[Iterable[Union[bytes, bytearray, memoryview, str]], str, bytes,
bytearray, memoryview] in the documentation is equivalent to the ndn.name.NonStrictName type.

18 Chapter 5. Miscellaneous packages

ndn-python-repo

5.3.2 Process

Under the hood the PubSub module transmits a series of Interest and Data packets:

1. The subscriber calls subscribe(topic, cb). This makes the subcriber listen on "/<topic>/notify".

2. The publisher invokes publish(topic, msg). This method sends an Interest with name "/<topic>/notify",
which will be routed to a subscriber. The interest carries the following fields in its application parameters:

• Publisher prefix: used by the subscriber to reach the publisher in the next step

• NotifyNonce: a random bytes string, used by the publisher to de-multiplex among different publica-
tions

• Forwarding hint (optional): if publisher prefix is not announced in the routing system, publisher can
provide a forwarding hint

Meanwhile, msg is wrapped into a Data packet named "/<pub_prefix>/msg/<topic>/
<notify_nonce>". Here, the data name contains topic to establish a binding between topic and
nonce, to prevent man-in-the-middle attacks that changes the topic.

3. The subscriber receives the notification interest, constructs a new Interest "/<pub_prefix>/msg/<topic>/
<notify_nonce>" and send it to the publisher.

4. The publisher receives the interest "/<pub_prefix>/msg/<topic>/<notify_nonce>", and returns the corre-
sponding data.

5. The subscriber receives the data, and invokes cb(data.content) to hand the message to the application.

6. The publisher receives the acknowledgement Data packet, and erases the soft state.

5.3.3 Encoding

The notify Interest’s application parameter is encoded as follows:

NotifyAppParam = DATA-TYPE TLV-LENGTH
[PublisherPrefix]
[NotifyNonce]
[PublisherFwdHint]

PublisherPrefix = Name

NotifyNonce = NOTIFY-NONCE-TYPE TLV-LENGTH Bytes

PublisherFwdHint = PUBLISHER-FWD-HINT-TYPE TLV-LENGTH Name

The type number assignments are as follows:

type Assigned number (deci-
mal)

Assigned number (hexadeci-
mal)

NOTIFY-NONCE-TYPE 128 0x80
PUBLISHER-FWD-HINT-
TYPE

211 0xD3

5.3. PubSub package 19

ndn-python-repo

5.3.4 Reference

class ndn_python_repo.utils.PubSub(app, prefix=None, forwarding_hint=None)
Initialize a PubSub instance with identity prefix and can be reached at forwarding_hint. TODO: support
msg larger than MTU

Parameters

• app (NDNApp) – NDNApp.

• prefix (Union[Iterable[Union[bytes, bytearray, memoryview, str]], str, bytes,
bytearray, memoryview]) – NonStrictName. The identity of this PubSub instance. The
publisher needs a prefix under which can publish data. Note that you cannot initialize two
PubSub instances with the same prefix on the same node, since it will cause double regis-
tration error.

• forwarding_hint (Union[Iterable[Union[bytes, bytearray, memoryview, str]],
str, bytes, bytearray, memoryview]) – NonStrictName. When working as publisher, if
prefix is not reachable, the subscriber can use forwarding_hint to reach the publisher.

async publish(topic, msg)
Publish msg to topic. Make several attempts until the subscriber returns a response.

Parameters

• topic (Union[Iterable[Union[bytes, bytearray, memoryview, str]], str, bytes,
bytearray, memoryview]) – NonStrictName. The topic to publish msg to.

• msg (bytes) – bytes. The message to publish. The pub-sub API does not make any as-
sumptions on the format of this message.

Returns
Return true if received response from a subscriber.

set_base_prefix(prefix)
Avoid registering too many prefixes, by registering prefix with NFD. All other prefixes under prefix
will be registered with interest filters, and will not have to be registered with NFD. Need to be called before
_wait_for_ready().

Parameters
prefix (Union[Iterable[Union[bytes, bytearray, memoryview, str]], str, bytes,
bytearray, memoryview]) – NonStrictName. The base prefix to register.

set_publisher_prefix(prefix)
Set the identify of the publisher after initialization. Need to be called before _wait_for_ready().

Parameters
prefix (Union[Iterable[Union[bytes, bytearray, memoryview, str]], str, bytes,
bytearray, memoryview]) – NonStrictName. The identity of this PubSub instance.

subscribe(topic, cb)
Subscribe to topic with cb.

Parameters

• topic (Union[Iterable[Union[bytes, bytearray, memoryview, str]], str, bytes,
bytearray, memoryview]) – NonStrictName. The topic to subscribe to.

• cb (callable) – callable. A callback that will be called when a message under topic is
received. This function takes one bytes argument.

20 Chapter 5. Miscellaneous packages

ndn-python-repo

unsubscribe(topic)
Unsubscribe from topic.

Parameters
topic (Union[Iterable[Union[bytes, bytearray, memoryview, str]], str, bytes,
bytearray, memoryview]) – NonStrictName. The topic to unsubscribe from.

async wait_for_ready()

Need to be called to wait for pub-sub to be ready.

5.4 Storage package

ndn-python-repo supports 3 types of databases as backends. The Storage package provides a unified key-value storage
API with the following features:

• Supports MustBeFresh

• Supports CanBePrefix

• Batched writes with periodic writebacks to improve performance

The Storage class provides an interface, and is implemented by:

• SqliteStorage

• LevelDBStorage

• MongoDBStorage

Note that the type Union[Iterable[Union[bytes, bytearray, memoryview, str]], str, bytes,
bytearray, memoryview] in the documentation is equivalent to the ndn.name.NonStrictName type.

5.4.1 Reference

class ndn_python_repo.storage.Storage

Interface for a unified key-value storage API.

get_data_packet(name, can_be_prefix=False, must_be_fresh=False)
Get a data packet named name.

Parameters

• name (Union[Iterable[Union[bytes, bytearray, memoryview, str]], str, bytes,
bytearray, memoryview]) – NonStrictName. The name of the data packet.

• can_be_prefix (bool) – bool. If true, use prefix match instead of exact match.

• must_be_fresh (bool) – bool. If true, ignore expired data.

Return type
Optional[bytes]

Returns
The value of the data packet.

put_data_packet(name, data)
Insert a data packet named name with value data. This method will parse data to get its freshnessPeriod,
and compute its expiration time by adding the freshnessPeriod to the current time.

Parameters

5.4. Storage package 21

ndn-python-repo

• name (Union[Iterable[Union[bytes, bytearray, memoryview, str]], str, bytes,
bytearray, memoryview]) – NonStrictName. The name of the data packet.

• data (bytes) – bytes. The value of the data packet.

remove_data_packet(name)
Remove a data packet named name.

Parameters
name (Union[Iterable[Union[bytes, bytearray, memoryview, str]], str, bytes,
bytearray, memoryview]) – NonStrictName. The name of the data packet.

Return type
bool

Returns
True if a data packet is being removed.

class ndn_python_repo.storage.SqliteStorage(db_path)
Init table “data” with the attribute key being the primary key.

Parameters
db_path (str) – str. Path to database file.

class ndn_python_repo.storage.LevelDBStorage(dir)
Creates a LevelDB storage instance at disk location str.

Parameters
dir (str) – str. The disk location of the database directory.

class ndn_python_repo.storage.MongoDBStorage(db, collection)
Init a MongoDB storage with unique index on key.

Parameters

• db (str) – str. Database name.

• collection (str) – str. Collection name.

22 Chapter 5. Miscellaneous packages

CHAPTER

SIX

EXAMPLES

TBD

23

ndn-python-repo

24 Chapter 6. Examples

CHAPTER

SEVEN

AUTHORS

• Zhaoning Kong <https://jonnykong.com>

• Xinyu Ma <https://zjkmxy.github.io>

• Yufeng Zhang <https://yufengzh.io>

• Zhiyi Zhang <https://zhiyi-zhang.com>

• Davide Pesavento

• Susmit Shannigrahi

• Saurab Dulal

• Junxiao Shi <https://yoursunny.com>

25

https://jonnykong.com
https://zjkmxy.github.io
https://yufengzh.io
https://zhiyi-zhang.com
https://yoursunny.com

ndn-python-repo

26 Chapter 7. Authors

CHAPTER

EIGHT

FUTURE PLANS

• Fix knowing bugs and problems

• Make better tests

• Make a Docker container for test, since installing nfd takes too long.

27

ndn-python-repo

28 Chapter 8. Future Plans

CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

29

ndn-python-repo

30 Chapter 9. Indices and tables

PYTHON MODULE INDEX

n
ndn_python_repo.clients.command_checker, 17
ndn_python_repo.clients.delete, 16
ndn_python_repo.clients.getfile, 16
ndn_python_repo.clients.putfile, 15

31

ndn-python-repo

32 Python Module Index

INDEX

C
check_delete() (ndn_python_repo.clients.command_checker.CommandChecker

method), 17
check_insert() (ndn_python_repo.clients.command_checker.CommandChecker

method), 17
CommandChecker (class in

ndn_python_repo.clients.command_checker),
17

concurrent_fetcher() (in module
ndn_python_repo.utils), 18

D
delete_file() (ndn_python_repo.clients.delete.DeleteClient

method), 16
DeleteClient (class in ndn_python_repo.clients.delete),

16

F
fetch_file() (ndn_python_repo.clients.getfile.GetfileClient

method), 16

G
get_data_packet() (ndn_python_repo.storage.Storage

method), 21
GetfileClient (class in

ndn_python_repo.clients.getfile), 16

I
insert_file() (ndn_python_repo.clients.putfile.PutfileClient

method), 15

L
LevelDBStorage (class in ndn_python_repo.storage), 22

M
module

ndn_python_repo.clients.command_checker,
17

ndn_python_repo.clients.delete, 16
ndn_python_repo.clients.getfile, 16
ndn_python_repo.clients.putfile, 15

MongoDBStorage (class in ndn_python_repo.storage), 22

N
ndn_python_repo.clients.command_checker

module, 17
ndn_python_repo.clients.delete

module, 16
ndn_python_repo.clients.getfile

module, 16
ndn_python_repo.clients.putfile

module, 15

P
publish() (ndn_python_repo.utils.PubSub method), 20
PubSub (class in ndn_python_repo.utils), 20
put_data_packet() (ndn_python_repo.storage.Storage

method), 21
PutfileClient (class in

ndn_python_repo.clients.putfile), 15

R
remove_data_packet()

(ndn_python_repo.storage.Storage method), 22

S
set_base_prefix() (ndn_python_repo.utils.PubSub

method), 20
set_publisher_prefix()

(ndn_python_repo.utils.PubSub method),
20

SqliteStorage (class in ndn_python_repo.storage), 22
Storage (class in ndn_python_repo.storage), 21
subscribe() (ndn_python_repo.utils.PubSub method),

20

U
unsubscribe() (ndn_python_repo.utils.PubSub

method), 20

W
wait_for_ready() (ndn_python_repo.utils.PubSub

method), 21

33

	ndn-python-repo
	Install and Run
	Install
	Migrate from repo-ng
	Instruction for developers

	Configuration
	Repo namespace
	Repo prefix registration
	Choose the backend database
	TCP bulk insert
	Logging
	systemd

	Specification
	Encoding
	Status Code Definition

	Insert
	Insert status check

	Delete
	Delete status check

	Check
	RepoCommandRes
	TCP bulk insert
	Overall
	Required Settings
	Recommended Settings

	Joining SVS Sync (Draft)

	Miscellaneous packages
	Client-side packages
	Introduction
	Reference

	ConcurrentFetcher package
	Introduction
	Reference

	PubSub package
	Introduction
	Process
	Encoding
	Reference

	Storage package
	Reference

	Examples
	Authors
	Future Plans
	Indices and tables
	Python Module Index
	Index

